
Chemical Engineering Journal 97 (2004) 115–129

Hybrid process modeling and optimization strategies integrating neural
networks/support vector regression and genetic algorithms:

study of benzene isopropylation on Hbeta catalyst

Somnath Nandia, Yogesh Badhea, Jayaram Lonaria, U. Sridevib, B.S. Raoc,
Sanjeev S. Tambea,∗, Bhaskar D. Kulkarnia

a Chemical Engineering Division, National Chemical Laboratory, Pune 411 008, India
b Department of Chemical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA

c Catalysis Division, National Chemical Laboratory, Pune 411 008, India

Received 22 February 2003; accepted 30 May 2003

Abstract

This paper presents a comparative study of two artificial intelligence based hybrid process modeling and optimization strategies, namely
ANN-GA and SVR-GA, for modeling and optimization of benzene isopropylation on Hbeta catalytic process. In the ANN-GA approach
[Ind. Eng. Chem. Res. 41 (2002) 2159], an artificial neural network model is constructed for correlating process data comprising values of
operating and output variables. Next, model inputs describing process operating variables are optimized using genetic algorithms (GAs)
with a view to maximize the process performance. The GA possesses certain unique advantages over the commonly used gradient-based
deterministic optimization algorithms. In the second hybrid methodology, a novel machine learning formalism, namelysupport vector
regression(SVR), has been utilized for developing process models and the input space of these models is optimized again using GAs. The
SVR-GA is a new strategy for chemical process modeling and optimization. The major advantage of the two hybrid strategies is that modeling
and optimization can be conducted exclusively from the historic process data wherein the detailed knowledge of process phenomenology
(reaction mechanism, rate constants, etc.) is not required. Using ANN-GA and SVR-GA strategies, a number of sets of optimized operating
conditions leading to maximized yield and selectivity of the benzene isopropylation reaction product, namely cumene, were obtained. The
optimized solutions when verified experimentally resulted in a significant improvement in the cumene yield and selectivity.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Availability of a process model is a prerequisite to pro-
cess optimization. Conventionally, two approaches namely
phenomenological(first principles) and empirical, are
employed for chemical process modeling. In phenomeno-
logical modeling, the detailed knowledge of the reaction
kinetics and associated heat and mass transport phenomena
are required to represent mass, momentum, and energy bal-
ances. The advantages of a phenomenological model are:
(i) since it represents physicochemical phenomenon under-
lying the process explicitly, it provides a valuable insight
into the process behavior, and (ii) it possesses extrapolation
ability. Owing to the complex nature of many chemical
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processes, the underlying physicochemical phenomenon is
seldom fully understood. Also, collection of the requisite
phenomenological information is costly, time-consuming
and tedious, and therefore development of phenomenologi-
cal process models poses considerable practical difficulties.
Moreover, nonlinear behavior being common in chemical
processes, it leads to complex nonlinear models, which in
most cases are not amenable to analytical solutions; thus,
computationally intensive numerical methods must be uti-
lized for obtaining solutions. Difficulties associated with
the construction and solution of phenomenological models
necessitates exploration of alternative modeling formalisms.
Modeling using empirical (regression) methods is one such
alternative. In conventional empirical modeling, appropri-
ate linear or nonlinear models are constructed exclusively
from the process input–output data without invoking the
process phenomenology. A fundamental deficiency of the
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Nomenclature

C cost function
D training data set
Etrn RMSE for training set
Etst RMSE for test set
f̂ single aggregated objective function
fk function correlatingkth output with

inputs
F feature space
k index for output variable; also number of

folds in cross-validation
K number of output variables (equal to

number of nodes in output layer of
network)

ln length ofnth binary segment
L number of nodes in hidden layer of neural

network model
N number of input variables (equal to number

of nodes in input layer of network)
Npop population size
Nmax

gen maximum number of allowable generations
for GA

pcross probability of cross-over
pmut probability of mutation
P no. of input–output example patterns used

in training
P(·) probability density function
RMSE root mean squared error
Remp empirical risk
Rreg regression risk
Sn decimal equivalent ofnth binary segment
x N-dimensional input vector
x∗ optimal decision vector
xL
n , xU

n lower and upper bounds ofnth input
variable

ŷi,k desired value ofkth output
y

p
i,k neural network predictedkth output

w weight vector
wk kth function’s parameter vector
ŵk weighting coefficient
||w||2 Euclidean norm

Greek symbols
αEBP momentum coefficient
�,�∗ vectors of Lagrange’s multiplier
ε precision parameter
εloss loss function parameter
εtol tolerance for termination criterion
η learning rate
λ regularization constant
ξ, ξ∗ slack variables
ξ̂j fitness value ofjth candidate solution
σ width of kernel of radial basis function
Φ function termed feature

conventional empirical modeling approach is that the struc-
ture (functional form) of the data-fitting model must be
specified a priori. Satisfying this requirement, especially for
nonlinearly behaving processes is a cumbersome task since
it involves selecting heuristically an appropriate nonlinear
model structure from numerous alternatives.

In the last decade,artificial neural networks(ANNs)
and more recentlysupport vector regression(SVR) have
emerged as two attractive tools for nonlinear modeling
especially in situations where the development of phe-
nomenological or conventional regression models becomes
impractical or cumbersome. The most widely utilized ANN
paradigm is themulti-layered perceptron(MLP) that ap-
proximates nonlinear relationships existing between an input
set of data (causal process variables) and the corresponding
output (dependent variables) data set. The advantages of an
ANN-based model are: (i) it can be constructed solely from
the historic process input–output data (example set), (ii)
detailed knowledge of the process phenomenology is unnec-
essary for the model development, (iii) a properly trained
model possesses excellent generalization ability owing to
which it can accurately predict outputs for a new input data
set, and (iv) even multiple input–multiple output (MIMO)
nonlinear relationships can be approximated simultaneously
and easily. Owing to their several attractive characteris-
tics, ANNs have been widely used in chemical engineering
applications such as steady state and dynamic process mod-
eling, process identification, yield maximization, nonlinear
control, and fault detection and diagnosis (see, e.g.,[2–6]).
There exists a number of algorithms—each possessing cer-
tain positive characteristics—to train an MLP network, for
example, the most popularerror-back-propagation(EBP)
[7], Quickprop[8] andresilient back-propagation(RPROP)
[9]. Training of an ANN involves minimizing a nonlinear
error function (e.g., root mean squared error, RMSE) that
may possess several local minima. Thus, it becomes nec-
essary to employ a heuristic procedure involving multiple
training runs to obtain an optimal ANN model whose pa-
rameters (weights) correspond to the global or the deepest
local minimum of the error function.

In recent years, SVR[10–12], which is a statistical learn-
ing theory based machine learning formalism is gaining
popularity due to its many attractive features and promising
empirical performance. The salient features of SVR are:
(i) like ANNs, SVR is an exclusively data-based nonlinear
modeling paradigm, (ii) SVR-based models are based on
the principle of structural risk minimization (SRM), which
equips them with greater potential to generalize, (iii) param-
eters of an SVR model are obtained by solving a quadratic
optimization problem, (iv) the objective function in SVR
being of quadratic form it possesses a single minimum thus
avoiding the heuristic procedure involved in locating the
global or the deepest local minimum on the error surface,
and (v) in SVR, the inputs are first nonlinearly mapped into
a high-dimensional feature space wherein they are corre-
lated linearly with the output. Although the foundation of
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the SVR paradigm was laid down in mid-1990s, its chemi-
cal engineering applications such as fault detection[13,14]
have emerged only recently.

Once an ANN or SVR-based process model is developed,
it can be used for process optimization to obtain the opti-
mal values of the process input variables that maximize or
minimize a specified objective function. Thus, it is possible
to obtain the optimal values of process operating variables,
which, for instance, maximize reactant conversion and
selectivity of the desired products, or minimize reactor tem-
perature and the selectivity of undesired by-products. Con-
ventionally, various deterministic gradient-based methods
[15] are used for optimizing a process model. Most of these
methods however require that the objective function should
be smooth, continuous, and differentiable. The ANN or SVR
models cannot be guaranteed to be smooth especially in
regions wherein the input–output data (training set) used in
model building are located sparsely. Hence, gradient-based
methods cannot be used efficiently for optimizing the input
space of an ANN or SVR model. In such situations, an effi-
cient optimization formalism known asgenetic algorithms
(GAs), which is lenient towards the form of the objective
function, can be used. The GAs are stochastic optimization
formalisms originally developed as the genetic engineering
models mimicking population evolution in natural systems
[16–18]. GAs follow the “survival-of-the-fittest” and “ge-
netic propagation of characteristics” principles of biological
evolution for searching the solution space of an optimiza-
tion problem. The principal advantages of the GAs are: (i)
they are zeroth order optimization method requiring only
the scalar values—and not the second and/or the first or-
der derivatives—of the objective function, (ii) capability of
handling nonlinear and noisy objective functions, (iii) they
perform global search and thus are most likely to arrive at
or near the globally optimum solution, and (iv) unlike most
gradient-based deterministic optimization methods, GAs do
not impose preconditions, such as smoothness, differentia-
bility, and continuity, on the form of the objective function.
Due to their several attractive properties, GAs have been
extensively used in chemical engineering (see, e.g., Refs.
[19–24]and reviews[25–27]).

In the present paper, ANN and SVR formalisms are inte-
grated with GAs to arrive at two hybrid process modeling
and optimization strategies. The strategies (henceforth re-
ferred to as “ANN-GA” and “SVR-GA”) use an ANN or
SVR as the nonlinear process modeling paradigm, and the
GA for optimizing the input space of the ANN/SVR model
such that an improved process performance is realized. To
our knowledge, the hybrid involving SVR and GA is being
used for the first time for chemical process modeling and
optimization. In this study, the ANN-GA[1] and SVR-GA
hybrid strategies have been used to model and optimize the
pilot plant scale process involving benzene isopropylation
using the Hbeta catalyst. The optimized operating conditions
leading to maximized yield and selectivity of the desired
reaction product (cumene) as given by the two strategies

have been compared. The best sets of operating conditions
obtained thereby when subjected to experimental validation
indeed resulted in significant enhancements in cumene yield
and selectivity.

The paper is organized as follows.Section 2describes
process modeling using ANN and SVR methods; the opti-
mization of the models using GAs is explained inSection 3.
Usage of ANN-GA and SVR-GA strategies for optimizing
the benzene isopropylation process along with the results of
experimental verification are described inSection 4. Finally,
Section 5gives a summary of the study.

2. Hybrid process modeling and optimization
formalisms

The process optimization objective under consideration
is stated as: given catalytic process data comprising values
of process operating (input) variables and the correspond-
ing values of process output (response) variables, find the
optimal values of input variables such that the pre-specified
measures of process performance are simultaneously maxi-
mized.

This optimization problem can be formulated as:

Maximizeyk = fk(x,wk), k = 1,2, . . . , K (1)

whereyk denotes thekth output variable,x = [x1, x2, . . . ,

xN ]T is anN-dimensional vector of process operating vari-
ables,fk the function correlatingkth output variable with the
inputs, andwk the parameter vector of functionfk. Eq. (1)de-
scribes a multi-objective (MO) optimization problem since
it involves simultaneous maximization ofK outputs,{yk},
k = 1,2, . . . , K. Using aggregation principle (also known
as “weighting objective method”), the MO optimization task
can be converted into a single objective (SO) optimization
by defining

Maximize f̂ =
K∑

k=1

ŵkyk =
K∑

k=1

ŵkfk(x,wk) (2)

wheref̂ denotes the single aggregated objective function and
ŵk the weighting coefficient (0≤ ŵk ≤ 1,

∑
kŵk = 1). The

weighting coefficient,ŵk, signifies the relative importance
of kth function in the MO optimization (Eq. (1)). The hybrid
strategies fulfill the SO optimization task in two steps. In
the first step, an ANN or SVR-based process model,yk =
fk(x,wk), is developed and in the second step, the input
space (x) of the process model is optimized using GAs with a
view of maximizing the single aggregated objective function
defined inEq. (2).

2.1. ANN-based modeling

For process modeling, the commonly used feed-forward
ANN architecture namely MLP may be employed. The MLP
network approximates the nonlinear input–output relation-
ships as defined by,yk = fk(x,wk), k = 1,2, . . . , K, where
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wk is the vector defining network weights. The MLP net-
work usually consists of three layers. The layers described
as input, hidden, and output layers compriseN, L, and K
number of processing nodes, respectively. Each node in the
input (hidden) layer is linked to all the nodes in the hid-
den (output) layer using weighted connections. The MLP
architecture also houses a bias node (with fixed output of
+1) in its input and hidden layers; the bias nodes are also
connected to all the nodes in the subsequent layer. Usage
of bias nodes helps the MLP-approximated function to be
positioned anywhere in theN-dimensional input space; in
their absence, the function is forced to pass through the ori-
gin of theN-dimensional space. TheN number of nodes in
the input layer is equal to the number of process operating
variables, whereas the number of output nodes (K) equals
the number of process outputs. However, the number of hid-
den nodes (L) is an adjustable parameter whose magnitude
is determined by issues such as the desired approximation
and generalization performance of the network model. In or-
der that the MLP network accurately approximates the non-
linear relationship existing between the process inputs and
the outputs, it needs to be trained in a manner such that
a pre-specified error function is minimized. In essence, the
MLP training procedure aims at obtaining an optimal weight
set{wk} that minimizes a pre-specified error function. The
commonly employed error function is the RMSE defined as

RMSE=
√√√√ P∑

i=1

K∑
k=1

(ŷi,k − y
p
i,k)

2 (3)

whereP refers to the number of input–output example pat-
terns used in training,i the index of the example pattern
(vector) and,̂yi,k andyp

i,k the desired (target) and MLP pre-
dicted values of thekth output node, respectively. The widely
used formalism for the RMSE minimization is the EBP al-
gorithm[7] utilizing a gradient-descent technique known as
the generalized delta rule(GDR) for iterative updation of
weights. The details of the heuristic procedure involved in
obtaining an optimal network model possessing good pre-
diction and generalization capabilities can be found in, e.g.,
Freeman and Skapura[28], Bishop [29], Tambe et al.[2]
and Nandi et al.[30]. The EBP training algorithm makes
use of two adjustable (free) parameters namely, the learning
rate,η (0 < η ≤ 1) and the momentum coefficient,αEBP
(0 < αEBP ≤ 1). The magnitudes of both these parameters
need to be optimized heuristically.

2.2. SVR-based modeling

SVR is an adaptation of a recent statistical learning the-
ory based classification paradigm, namelysupport vector
machines[11]. The SVR formulation follows SRM princi-
ple, as opposed to the empirical risk minimization (ERM)
approach which is commonly employed within statistical
machine learning methods and also in training ANNs. In
SRM, an upper bound on the generalization error is min-

imized as opposed to the ERM, which minimizes the pre-
diction error on the training data. This equips the SVR with
a greater potential to generalize the input–output relation-
ship learnt during its training phase for making good pre-
dictions for new input data. The SVR is a linear method in
a high-dimensional feature space, which is nonlinearly re-
lated to the input space. Though the linear algorithm works
in the high-dimensional feature space, in practice it does not
involve any computations in that space, since through the
usage of kernels, all necessary computations are performed
directly in the input space. In the following, the basic con-
cepts of SVR are introduced. A more detailed description of
SVR can be found in Vapnik[10,12], Burges[31], Smola
et al. [32] and Schölkopf et al.[33].

Consider a training data setD = {(x1, y1), (x2, y2), . . . ,

(xP, yP)}, such thatxi ∈ RN is a vector of input variables
andyi ∈ R the corresponding scalar output (target) value.
Here, the modeling objective is to find a regression function,
y = f(x), such that it accurately predicts the outputs{y}
corresponding to a new set of input–output examples,{(x,
y)}, which are drawn from the same underlying joint prob-
ability distribution,P(x, y), as the training set. To fulfill the
stated goal, SVR considers the following linear estimation
function:

f(x) = 〈w, Φ(x)〉 + b (4)

wherew denotes the weight vector,b a constant known as
“bias”, Φ(x) a function termedfeature, and 〈w, Φ(x)〉 the
dot product in the feature space,F, such thatΦ : x →
F,w ∈ F. In SVR, the input data vector,x, is mapped into a
high-dimensional feature space,F, via a nonlinear mapping
function,Φ, and a linear regression is performed in this space
for predictingy. Thus, the problem of nonlinear regression
in lower-dimensional input spaceRN is transformed into
a linear regression in the high-dimensional feature space,
F. Accordingly, the original optimization problem involving
nonlinear regression is transformed into finding the flattest
function in the feature spaceF and not in the input space,x.
The unknown parametersw andb in Eq. (4)are estimated
using the training set,D. To avoid over fitting and thereby
improving the generalization capability, following regular-
ized functional involving summation of the empirical risk
and a complexity term ||w||2, is minimized[31]:

Rreg[f ]=Remp[f ] + λ||w||2=
P∑
i=1

C(f(xi) − yi) + λ||w||2

(5)

whereRreg and Remp denote the regression and empirical
risks, respectively, ||w||2 the Euclidean norm,C(·) a cost
function measuring the empirical risk, andλ > 0 a regular-
ization constant. For a given function,f, the regression risk
(test set error),Rreg(f), is the possible error committed by
the functionf in predicting the output corresponding to a
new (test) example input vector drawn randomly from the
same sample probability distribution,P(x, y), as the training
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Fig. 1. A schematic illustration of SVR using ε-sensitive loss function.

set. The empirical risk Remp(f), represents the error (termed
“ training set error” ) committed in predicting the outputs
of the training set inputs. Minimization task described in
Eq. (5) involves: (i) minimization of the empirical loss
function Remp(f) and, (ii) obtaining as small w as possible,
using the training set D. The commonly used loss function
is the “ε-insensitive loss function” given as [12]

C(f(x) − y) =
{ |f(x) − y| − ε for |f(x) − y| ≥ ε,

0 otherwise
(6)

where ε is a precision parameter representing the radius of
the tube located around the regression function (see Fig. 1);
the region enclosed by the tube is known as “ε-intensive
zone” . The SVR algorithm attempts to position the tube
around the data as shown in Fig. 1. The optimization crite-
rion in Eq. (6) penalizes those data points whose y values
lie more than ε distance away from the fitted function, f(x).
In Fig. 1, the size of the stated excess positive and negative
deviations are depicted by ξ and ξ∗, respectively, which are
termed “slack” variables. Outside the [−ε, ε] region, the
slack variables assume non-zero values. The SVR fits f(x) to
the data in a manner such that: (i) the training error is min-
imized by minimizing ξi and ξ∗

i and, (ii) ||w||2 is minimized
to increase the flatness of f(x) or penalize over complexity
of the fitting function. Vapnik [7] showed that the follow-
ing function possessing finite number of parameters can
minimize the regularized function in Eq. (5):

f(x,�,�∗) =
P∑
i=1

(αi − α∗
i )K(x, xi) + b (7)

where αi and α∗
i (≥0) are the coefficients (Lagrange mul-

tipliers) satisfying αiα
∗
i = 0, i = 1, 2, . . . , P , and K(x, xi)

denotes the so called ‘kernel’ function describing the dot
product in the feature space. The kernel function is defined in
terms of the dot product of the mapping function as given by

K(xi, xj) = 〈Φ(xi), Φ(xj)〉 (8)

The advantage of this formulation (Eqs. (7) and (8)) is that
for many choices of the set {Φi(x)}, including infinite-
dimensional sets, the form of K is analytically known and
very simple [34]. Accordingly, the dot product in the fea-
ture space F can be computed without actually mapping the
vectors xi and xj into that space (i.e., computation of Φ(xi)
and Φ(xj)). There exist several choices for the kernel func-
tion K; the two commonly used kernel functions, namely,
radial basis function (RBF) and nth degree polynomial are
defined below in Eqs. (9) and (10), respectively:

K(xi, xj) = exp

(
−||xi − xj||2

2σ2

)
(9)

K(xi, xj) = [1 + (xi, xj)]n (10)

In Eq. (7), the coefficients � and �∗ are obtained by solving
following quadratic programming problem:

Maximize R(�∗,�)= −1

2

P∑
i,j=1

(α∗
i − αi)(α

∗
j − αj)K(xi, xj)

− ε

P∑
i=1

(α∗
i + αi) +

P∑
i=1

yi(α
∗
i − αi)

(11)

subject to constraints 0 ≤ αi, α
∗
i ≤ C ∀ i and

∑P
i=1(α

∗
i −

αi) = 0. Having estimated �,�∗ and b, using a suitable
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quadratic programming algorithm, the SVR-based regres-
sion function takes the form

f(x,w) = f(x,�,�∗) =
P∑
i=1

(α∗
i − αi)K(xi, x) + b (12)

where vector w is described in terms of the Lagrange
multipliers � and �∗. Owing to the specific character of
the above-described quadratic programming problem, only
some of the coefficients, (α∗

i − αi), are non-zero and the
corresponding input vectors, xi, are called support vectors
(SVs). The SVs can be thought of as the most informative
data points that compress the information content of the
training set. The coefficients αi and α∗

i have an intuitive
interpretation as forces pushing and pulling the regression
estimate f(xi) towards the measurements, yi [35].

In Eq. (12), the bias parameter, b, can be computed as
follows:

b =
{
yi − f(xi)b=0 − ε for αi ∈ (0, C),

yi − f(xi)b=0 + ε for α∗
i ∈ (0, C)

(13)

where xi and yi, respectively, denote the ith SV and the cor-
responding target output. In the SVR formulation, C and ε

are two user-specified free parameters; while C represents
the trade-off between the model-complexity and the approx-
imation error, ε signifies the width of the ε-insensitive zone
used to fit the training data. The stated free parameters to-
gether with the specific form of the kernel function control
the accuracy and generalization performance of the regres-
sion estimate. The procedure of judicious selection of C and
ε is explained by Cherkassky and Ma [36].

3. GA-based optimization of ANN and SVR models

The optimization objective underlying the GA-based op-
timization of an ANN or SVR model is defined as: find
the N-dimensional optimal decision variable vector, x∗ =
[x∗

1, x
∗
2, . . . , x

∗
N ]T, representing optimal process conditions

such that it simultaneously maximizes process outputs, yk,
k = 1, 2, . . . , K. The corresponding SO function f̂ to be
maximized by the GA is defined in Eq. (2). In the GA pro-
cedure, the search for an optimal solution (decision) vector,
x∗, begins from a randomly initialized population of prob-
able (candidate) solutions. The solutions, usually coded in
the form of binary strings (chromosomes), are then tested to
measure their fitness in fulfilling the optimization objective.
Subsequently, a main loop comprising following operations
is performed: (i) selection of better (fitter) parent chromo-
somes, (ii) production of an offspring solution population by
crossing over the genetic material between pairs of the fit-
ter parent chromosomes, and (iii) mutation (bit-flipping) of
the offspring strings. Implementation of this loop generates
a new population of candidate solutions, which as compared
to the previous population, usually fares better at fulfilling
the optimization objective. The best string that evolves after

repeating the above-described loop till convergence, forms
the solution to the optimization problem [1,30]. The step-
wise procedure for the GA-based optimization of an ANN
or SVR model is provided in Appendix A (also see the
flowchart in Fig. 2).

4. Modeling and optimization of benzene isopropylation
over Hbeta catalyst process

Isopropylation of benzene is an important alkylation re-
action in the petrochemical industry for the synthesis of
cumene, which is the chief starting material in phenol pro-
duction. In the last decade, several modifications of the
zeolite beta were explored as potential catalysts in cumene
synthesis [37–40]. More recently, isopropylation of benzene
over Hbeta (protonic form of beta catalyst) was investigated
by Sridevi et al. [41]. Beta is a crystalline alumino-silicate
catalyst with high silica content and its important character-
istic is that it is the only large pore zeolite with chiral pore
intersections. It consists of 12-membered rings intercon-
nected by cages formed by intersecting channels. The linear
channels have pore opening dimensions of 5.7 Å × 7.5 Å,
whereas the tortuous channels with intersections of two lin-
ear channels have approximate dimensions of 5.6 Å ×6.5 Å.
The catalyst has pore volume of ≈0.2 cm3/g. In the study by
Sridevi et al. [41], a phenomenological model for benzene
isopropylation reaction was developed based on the iso-
propyl alcohol conversion in a continuous down-flow differ-
ential packed bed reactor taking into account the secondary
reactions such as the dehydration of alcohol. This model
however was restricted to the lower conversion (<30%) of
the limiting reactant, i.e., isopropyl alcohol, wherein heat
and mass transfer resistances in the differential bed were
assumed to be negligible. For maximizing yield and selec-
tivity of cumene in the vapor phase alkylation of benzene
with isopropyl alcohol over Hbeta catalyst, experiments
were also conducted in a pilot plant scale reactor. Iso-
propylation of benzene involves a main reaction producing
cumene and multiple side reactions as described below:

• Main reaction:

Benzene + isopropyl alcohol → cumene + water

(benzene alkylation)

• Secondary reactions:

Cumene + isopropyl alcohol

→ p-di-isopropyl benzene + water

(cumene alkylation)

p-Di-isopropyl benzene → m-di-isopropyl benzene

(isomerization)

2-Isopropyl alcohol → di-isopropyl ether + water

(alcohol dehydration)
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Initialize generation index, Ngen= 0

Generate binary coded initial population of Npop chromosomes randomly

•Decode  jth chromosome (j = 1, 2, …, Npop) to obtain 
the corresponding solution vector, x j , using Eq. A-I

• Apply x j to the ANN / SVR model to compute the 
output, yk.

• Evaluate fitness, of the jth chromosome using {yk}
• Rank the chromosomes in the descending order of their 

fitness scores 

Select (Npop/2) number of parent pairs by utilizing 
the stochastic remainder selection methodology 

Generate offspring population by performing crossover on parent pairs

Perform mutation on the offspring population 

Update generation index: Ngen = Ngen + 1

?max

gengen NN ≥

Decode the top ranked chromosome to obtain the optimal solution vector, x*

Yes

No

jξ̂

Fig. 2. Flowchart of GA-based optimization of ANN/SVR model.

4.1. Materials

Beta catalyst (1.5 mm extrudates with 20% binder) in its
active protonated form with Si–Al ratio of 15 was obtained
from M/s UCIL, India, and utilized in the reaction; ben-
zene and isopropyl alcohol (isopropanol) were of “analytical
reagent” grade.

4.2. Experimental set-up

Vapor phase isopropylation of benzene was carried out in a
pilot plant scale stainless steel reactor (see Fig. 3) with a pre-
heater in its upstream and a condenser in the down-stream.

The reactor specifications are as follows—material of con-
struction: SS 316, internal diameter (ID): 25 mm, wall thick-
ness: 6 mm, reactor length: 33 cm and catalyst bed height:
10–15 cm. Heating coils are wound around the reactor to
provide proper heating and maintain temperature; the reac-
tor is also jacketed with insulation to minimize the heat loss.
During reactor operation, the liquid mixture of benzene and
isopropyl alcohol was fed to the reactor by a positive dis-
placement pump; hydrogen was used as the carrier gas. The
condensed products collected were analyzed with a flame
ionization detector (FID) using a “Xylene Master” capil-
lary column fitted to a Shimadzu 15A gas chromatograph
(GC).
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Fig. 3. Schematic illustration of the reactor set-up.

4.3. Modeling and optimization of isopropylation process

The objective of the present case study is to model and
optimize the isopropylation pilot plant process with a view
to simultaneously maximize yield and selectivity of cumene.
Though the formation of cumene via isopropylation of ben-
zene is the main reaction, a series of other components
are also produced via side reactions. For developing a phe-
nomenological model for the pilot plant scale integral reac-
tor, it is necessary to consider the detailed kinetics of the
stated multiple reactions in the conservation equations. Due
to the tedious procedure involved in obtaining the requisite
kinetic information, the exclusively data-based ANN-GA
and SVR-GA methods were chosen for simultaneously max-
imizing the yield and selectivity of cumene. Accordingly,
four reactor operating variables namely, reaction tempera-
ture (x1), pressure (x2), benzene to isopropyl alcohol mole
ratio (x3) and weight hourly space velocity (WHSV) (x4),
form the input space of the ANN and SVR-based reactor
models. Cumene yield and selectivity defined as y1 and y2,
respectively, are the output variables and they are evaluated
as

y1 = 100 × weight of cumene formed per unit time

weight of isopropyl alcohol fed per unit time
(14)

y2 = 100 × weight of cumene formed per unit time

weight of total aromatics produced per unit time
(15)

A total of 42 experiments (see Table 1) were conducted
to seek the effect of varying values of four operating
condition variables (x1–x4) on cumene yield and selec-
tivity. The lower (xL

n ) and upper (xU
n ) limits over which

the four input variables were varied are: (i) temperature
(◦C) (x1) = [100.0, 280.0]; (ii) pressure (MPa) (x2) =
[0.101, 2.533]; (iii) benzene to isopropyl alcohol mole ratio
(x3) = [1.0, 10.0]; (iv) WHSV (h−1) (x4) = [2.5, 13.0].
It can be easily noticed from the reaction stoichiometry
that no change in the number of moles occurs and hence
pressure will have no significant effect. Low operating pres-
sure should then be favored from a practical consideration.
Accordingly, majority of the experiments were conducted
at a low pressure (0.101 MPa) with the remaining ones
covering the pressure range of 0.404–2.533 MPa. The max-
imum cumene yield and selectivity values obtained in the
42 experiments were: y1 = 22.1 wt.% (x1 = 210 ◦C, x2 =
2.533 MPa, x3 = 6, x4 = 5 h−1) and, y2 = 93.8 wt.%
(x1 = 230 ◦C, x2 = 2.533 MPa, x3 = 6, x4 = 5 h−1), re-
spectively. For maximizing cumene yield and selectivity
simultaneously, the SO optimization problem (Eq. (2)) was
solved wherein ANN and SVR-based models were built and
optimized separately using the GA. This way, it is possible
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Table 1
Process data used for development of ANN and SVR-based models

Expt. no. Temperature (◦C) Pressure (MPa) Benz/IPA (mole ratio) WHSV (h−1) Yield (wt.%) Selectivity (wt.%)

1 110 0.101 8 3.3 0.07 77.03
2a 145 0.101 8 3.3 11.6 58.75
3 180 0.101 8 3.3 15.78 79.93
4 210 0.101 8 3.3 17.365 90.72
5 215 0.101 8 3.3 16.09 91.95
6 150 0.404 8 3.3 12.2 65.74
7 135 0.404 8 3.3 12.99 74.58
8a 110 0.404 8 3.3 0.71 80.82
9 100 0.404 8 3.3 0.19 75.02

10 110 0.101 10 3.3 0.55 67.74
11 110 0.101 8 3.3 0.24 54.85
12a 110 0.101 6 3.3 0.37 53.63
13 110 0.101 3 3.3 0.2 32.13
14 110 0.101 1 3.3 0.14 21.62
15 110 0.101 8 6.8 0.24 54.85
16 110 0.101 8 8 0.15 44.64
17 110 0.101 8 9.5 0.13 37.38
18 110 0.101 8 10.5 0.08 39.3
19a 110 0.101 8 12 0.09 39.13
20 110 0.101 8 13 0.07 39.1
21 105 0.101 8 6.8 0.3 70.38
22 110 0.101 8 6.8 0.24 54.85
23 115 0.101 8 6.8 0.35 48.25
24 130 0.101 8 6.8 4.61 76.68
25 185 0.101 8 6.8 9.2 59.23
26 210 0.101 6.5 3.3 20.04 91.8
27 155 0.101 6.5 3.3 16.93 77.4
28a 180 0.101 6.5 3.3 20.27 90.9
29 210 0.101 6.5 3.3 19.86 91.9
30 225 0.101 6.5 3.3 19.1 89.3
31 250 0.101 6.5 3.3 17.89 85.2
32 275 0.101 6.5 3.3 17.29 83.1
33 230 0.101 6.5 2.5 20.33 91.1
34 215 0.101 7 5 19.86 91.9
35a 215 1.013 7 5 19.54 92
36 215 1.824 7 5 18.68 89.1
37 215 2.533 7 5 17.74 86.8
38 195 2.533 6 5 18.92 85.6
39 210 2.533 6 5 22.1 93.7
40 230 2.533 6 5 22.02 93.8
41 250 2.533 6 5 21.35 90.7
42 280 2.533 6 5 20.48 86.2

a These data were used as test set.

to compare the modeling and optimization performance of
the ANN-GA and SVR-GA hybrid formalisms.

4.4. ANN-based modeling of benzene isopropylation
process

An advantage of the ANN-based modeling is that unlike
SVR, a comprehensive MIMO model can be constructed
for both the process outputs y1 and y2. To develop such
a model, a three-layered MLP architecture was used. For
conducting network training, the experimental data set (see
Table 1) was partitioned into training (36 patterns) and test
(6 patterns) sets. While the training set was utilized for the
EBP based iterative updation of the network weights, the
test set was used for simultaneously monitoring the gener-

alization ability of the MLP model. The MLP architecture
comprised four input (N = 4) and two output (K = 2)
nodes. For developing an optimal MLP model, its struc-
tural parameter, namely the number of hidden nodes (L) and
the EBP algorithm-specific parameters, viz., learning rate
(η) and momentum coefficient (αEBP) were varied system-
atically; the effect of random initialization of the network
weights also was examined by changing the seed values of
the pseudo-random number generator [1]. For choosing an
overall optimal network model, the criterion used was least
RMSE for the test set. The optimal MLP model that satis-
fied this criterion has five hidden nodes (L = 5), η = 0.7
and αEBP = 0.02. The values of training set RMSE (Etrn)
and the test set RMSE (Etst) along with the corresponding
values of correlation coefficient (CC) are listed in Table 2.
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Table 2
Performance indicators of ANN and SVR models

ANN-based model SVR-based model

Yield Selectivity Yielda Selectivityb

Etrn Etst Etrn Etst Etrn Etst Etrn Etst

RMSE 0.492 0.438 4.641 4.678 0.842 0.712 6.595 4.986
CC 0.998 0.999 0.974 0.976 0.995 0.999 0.955 0.962

a ε-SVR parameters—yield model: C = 264; γ = 1/2σ2 = 0.9;
εloss = 0.00001; εtol = 0.00001.

b ε-SVR parameters—selectivity model: C = 132; γ = 1/2σ2 = 0.8;
εloss = 0.00001; εtol = 0.00001.

The low and comparable Etrn and Etst values indicate good
prediction and generalization ability of the trained network
model. Good prediction and generalization performance of
the model is also evident from the high and comparable CC
values corresponding to both the outputs of training and test
sets. Fig. 4 (panels a and b) depicts a comparison of the out-
puts as predicted by the MLP model and their target values.

4.5. SVR-based modeling of isopropylation reaction

Here, two SVR models for cumene yield and selectiv-
ity, respectively, were developed using the same training
set as used to obtain the ANN-based model. The gener-
alization performance of the SVR models was evaluated
using the respective test sets. In the present study, an
SVR-implementation known as “ε-SVR” in the LIBSVM
software library [42], has been used to develop the two
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Fig. 4. Yield and selectivity values predicted by the ANN (panels a and b) and SVR (panels c and d) models.

SVR-based models. The LIBSVM package utilizes a fast
and efficient method known as sequential minimal optimiza-
tion (SMO) [43,44] for solving large quadratic programming
problems and thereby estimating function parameters �,�∗
and b (see Eq. (12)). To obtain an optimal SVR model, it
is necessary to examine the effects of kernel function and
other algorithm-specific parameters; the three kernel func-
tions that were tested are polynomial, RBF and sigmoid.
Among these, RBF resulted in the least RMSE values for
the training and test sets of the outputs, y1 and y2. The
number of SVs used by the SVR algorithm for fitting the
yield and selectivity models were 30 and 33, respectively.
The optimal values of the four SVR-specific parameters
namely, width of RBF kernel (σ), cost coefficient (C), loss
function parameter (εloss) and tolerance for termination cri-
terion (εtol) that minimized the Etrn and Etst corresponding
to yield and selectivity models are listed in Table 2; also
listed are the values of CCs for the training and test set
predictions along with the corresponding RMSE values for
both the models. A comparison of the SVR model predicted
and the corresponding target values of cumene yield and
selectivity is depicted in panels c and d of Fig. 4.

In the above-described modeling simulations, the size of
the training set (36 patterns) was closer to its statistical limit
(30 patterns) below which any prediction made by the model
is considered arbitrary. To avoid the possibility of arbitrary
predictions arising out of insufficient training data, a method
known as “k-fold cross-validation (CV)” is commonly used
to select an optimal model. In this approach, the training set
is first divided randomly into k equal sized subsets. Next,
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k number of models are constructed by leaving out a dif-
ferent subset each time, with the remaining (k − 1) subsets
collectively representing the training set. An average of the
RMSEs corresponding to the left-out subsets, known as “CV
error (ECV)” gives an estimate of the model performance if
a large-sized data set was available for building the model.
Accordingly, in a separate exercise numerous SVR models
for cumene yield and selectivity were developed by chang-
ing the SVR’s algorithm-specific parameters and simultane-
ously using the CV strategy. For performing CV, the training
set was divided into six subsets (k = 6) each comprising
six patterns. It was observed from these simulations that the
SVR-based yield and selectivity models described earlier
(see Table 2) also minimized the corresponding CV errors.
The minimum ECV values for the cross-validated yield and
selectivity models were 0.753 and 4.847, respectively. A
comparison of the test set RMSEs (0.712 and 4.986) per-
taining to the yield and selectivity models (see Table 2) with
the corresponding CV errors (0.753 and 4.847) reveals that
they are in close agreement. Such a close match between
the CV and test set RMSEs indicate that the size of the
training data was adequate for building the SVR models.

4.6. GA-based optimization of the ANN and SVR models

While performing optimization of the input space of
the ANN and SVR models, the best values of following
GA-specific parameters were chosen heuristically: popu-
lation size (Npop) = 25, cross-over probability (pcross) =
0.82, mutation probability (pmut) = 0.05, and maximum
number of generations (Ngen) = 100. In order to obtain the
best set of operating conditions, GA runs were replicated
several, i.e., 50 times, using different random number gen-
erator seeds. A different seed value generates a dissimilar
population of initial candidate solutions, thus assisting in
the exhaustive search of the solution space and thereby
locating the globally optimum solution. For computing fit-
ness values (ξ̂j) of the candidate solutions, following fitness
function was employed:

ξ̂j = 1
100 (ŵ1y1 + ŵ2y2) = 1

200 (y1 + y2),

ŵ1 = ŵ2 = 0.5, j = 1, 2, . . . , Npop (16)

The three best operating condition sets given by the
GA-based optimization of the ANN and SVR models are
tabulated in Table 3. It is seen from the tabulated opti-
mized values that the ANN-GA method has yielded an
overall optimal solution (x∗

1 = 271.5, x∗
2 = 0.342, x∗

3 =
3.69, x∗

4 = 12.83) maximizing both the yield (24.88%)
and selectivity (99.04%) of cumene. Moreover, the best
set of operating conditions given by the SVR-GA method
(x∗

1 = 270.1, x∗
2 = 0.380, x∗

3 = 3.55, x∗
4 = 13.27) is similar

to that obtained using the ANN-GA method. This set though
results in approximately same value (24.8%) of cumene
yield as given by the ANN-GA method, the corresponding
selectivity value (95.76%) is marginally inferior to that

from the ANN-GA method (99.04%). Similar observation
can also be made from the other two solutions given by the
SVR-GA method. The small differences in the selectivity
values maximized by the SVR-GA method are possible if:
(i) the GA has found a locally—and not globally—optimum
solution, and (ii) the function fitted by the SVR differs from
that fitted by the ANN. To test first possibility, input space
of the SVR-based selectivity model was searched rigorously
using GAs, by restricting the search in the neighborhood
of the best solution given by the ANN-GA strategy. How-
ever, these simulations showed no significant improvement
over the best solution given by the SVR-GA method. This
result clearly suggests that the GA has indeed searched the
global or the tallest local maximum corresponding to the
SVR-based model.

A comparison of the training set RMSE values and the
corresponding CC magnitudes in respect of ANN and SVR
models (see Table 2) reveals that there exists a small differ-
ence in the values. It can thus be inferred that the functions
fitted by the ANN and SVR are indeed different. These dif-
ferences however affect the optimized solutions given by the
two methods only marginally. The differences in the func-
tions fitted by the ANN and SVR can arise owing to very
different fitting strategies employed by the two methods—
while the ANNs approximate the nonlinear input–output re-
lationships directly, in SVR the inputs are first mapped into a
high-dimensional feature space and then correlated linearly
with the output. It is also possible that ANN and SVR react
differently to the noise, which is inherent to the experimen-
tal data.

4.7. Experimental verification of GA-optimized solutions

It is noticed from the optimized reactor conditions listed
in Table 3 that solutions 1 and 3 given by the ANN-GA
method and the three solutions provided by the SVR-GA
method fall in a narrow range. However, ANN-GA-based
solutions result in slightly higher (up to 3.31%) selectivity
values when compared to the SVR-GA-based best solution.
To verify their validity, all the three sets of optimized oper-
ating conditions given by the ANN-GA method were sub-
jected to experimental verification and the results obtained
thereby are listed in Table 4. As can be observed from the
tabulated values, the experimental results match the predic-
tions of the ANN-GA method with excellent accuracy. In
fact, except the yield value in the second verification exper-
iment, which shows 4.41% error from its GA-maximized
value of 24.84%, all other yield and selectivity values val-
idate the corresponding GA-maximized values within 1%
accuracy. It is possible to explain the occurrence of 4.41%
error on the basis of sparseness in the experimental data. As
noted previously, most experiments were conducted at a low
pressure (0.101 MPa) and therefore experimental data are
sparsely located in the higher pressure (>0.101 MPa) range.
In regions of sparse data, it is possible that the function fit-
ted by the ANN or SVR shows minor deviations from the
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Table 3
Optimized process conditions given by ANN-GA and SVR-GA methodologies

Soln. no. ANN-GA SVR-GA

Optimized inputs Maximized outputs Optimized inputs Maximized outputs

Temperature
(◦C) (x∗

1)

Pressure
(MPa) (x∗

2)

Benz/IPA (mole
ratio) (x∗

3)

WHSV
(h−1) (x∗

4)

Yield (wt.%)
(y∗

1)

Selectivity
(wt.%) (y∗

2)

Temperature
(◦C) (x∗

1)

Pressure
(MPa) (x∗

2)

Benz/IPA
(mole ratio)
(x∗

3)

WHSV
(h−1) (x∗

4)

Yield (wt.%)
(y∗

1)

Selectivity
(wt.%) (y∗

2)

1 271.5 0.343 3.69 12.83 24.88 99.04 270.1 0.380 3.55 13.27 24.8 95.76
2 267.2 0.1588 4.05 12.83 24.84 98.90 266.1 0.392 3.95 12.93 24.0 93.8
3 270.08 0.366 4.05 11.76 24.82 98.74 266.1 0.368 3.85 12.35 24.63 93.96
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Table 4
Results of experimental verification

Expt. no. Experimental conditions Yield (output 1) Selectivity (output 2)

Temperature
(◦C)

Pressure
(MPa)

Benz/IPA
(mole ratio)

WHSV
(h−1)

GA-maximized
value (wt.%)

Exptl.
value
(wt.%)

Error
(%)

GA-maximized
value (wt.%)

Exptl.
value
(wt.%)

Error
(%)

1 271.5 0.344 3.7 12.8 24.88 24.69 0.77 99.04 98.98 0.06
2 267.2 0.162 4.0 12.8 24.84 23.79 4.41 98.90 98.70 0.20
3 270.0 0.365 4.0 11.8 24.82 24.58 0.98 98.74 98.65 0.09

true trend line. Consequently, the solution searched by the
GA also deviates from its true optimum. In essence, the
sparseness of the experimental data in the pressure range of
0.101–0.404 MPa may have resulted in the 4.41% error for
the second validation experiment, wherein GA-optimized
pressure value was 0.162 MPa. From the experimental data
used for building the ANN and SVR methods, it is seen that
the maximum values of the cumene yield and selectivity
were 22.1% (expt. no. 39) and 93.8% (expt. no. 40), respec-
tively. A comparison of these values with those from the
verification experiments reveal that the GA-based optimized
conditions have simultaneously improved the cumene yield
and selectivity by 2.59 and 5.1%, respectively.

5. Conclusion

In this paper, two hybrid process modeling and opti-
mization strategies integrating ANNs/SVR with the GAs
have been employed for modeling and optimization of ben-
zene isopropylation pilot plant scale catalytic process. The
SVR is a novel machine learning based nonlinear model-
ing paradigm possessing certain unique features such as
its formulation involves solution of a quadratic program-
ming problem possessing a single minimum. Thus, the rig-
orous heuristic involved in locating the global minimum
(as in ANNs) is avoided in SVR-implementation. In the
two hybrid strategies, a process model is developed using
an ANN or SVR method following which the input space
of that model is optimized using GAs such that the pro-
cess performance is maximized. The hybrid approach in-
volving SVR and GAs is a new method wherein, similar to
the ANN-GA formalism, process modeling and optimiza-
tion can be conducted exclusively using historic process
data. Using ANN-GA and SVR-GA strategies separately, a
number of optimized sets of operating conditions, which si-
multaneously maximize the yield and selectivity of cumene
(desired product of isopropylation reaction) were obtained.
It was observed that the best sets of process operating con-
ditions given by the two strategies were similar. Finally, the
optimized solutions given by the ANN-GA method when
subjected to experimental verification, matched the maxi-
mized cumene yield and selectivity values with excellent
accuracy.
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Appendix A. Stepwise procedure for the GA-based
optimization of an ANN or SVR model

• Step 1 (initialization): Set generation index (Ngen) to zero
and generate a population of Npop binary strings (chro-
mosomes) randomly; each string consisting of lchr bits is
divided into N segments equal to the number of decision
(input) variables to be optimized.

• Step 2 (fitness computation): Decode jth binary-coded
chromosome (j = 1, 2, . . . , Npop) to obtain its equivalent
decimal-valued solution vector (xj) using

xj,n = xL
n + (xU

n − xL
n)Sn

2ln − 1
,

N∑
n=1

ln = lchr (A.1)

where xL
n and xU

n , respectively, refer to the lower and upper
bounds on xn, ln the length of nth binary segment and Sn
the decimal equivalent of the nth binary segment. Next,
depending upon the model to be optimized, vector xj is
used to compute the output of an ANN or SVR model; this
output is subsequently used to calculate the fitness value
(ξ̂j) of the jth candidate solution (see Eq. (16)). Upon
computing the fitness scores of Npop candidate solutions
in the current population, the solutions are ranked in the
decreasing order of their fitness scores.

• Step 3 (parent selection): From the current population,
choose Npop number of parent chromosomes to form the
mating pool. The members of this pool, which are used
to produce offspring population, possess relatively high
fitness scores. The commonly used parent selection tech-
niques are the Roulette–Wheel (RW) method or its more
stable variant known as the stochastic remainder selection
(SRS) [18].

• Step 4 (cross-over): Randomly select Npop/2 number of
parent pairs from the mating pool and perform cross-over
operation on each pair with probability equal to pcross
(0 < pcross ≤ 1). In cross-over, parent strings are cut at
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the same randomly chosen cross-over point to obtain two
substrings per parent. The substrings are then mutually
exchanged between the parents and combined to form
two offspring chromosomes. This cross-over operation is
performed on all the parent pairs in the mating pool to
obtain an offspring population of the size of the mating
pool.

• Step 5 (mutation): Flip (mutate) the bits of the offspring
strings where the probability of a bit getting flipped (zero
to one or vice versa) is equal to pmut. The recommended
range of pmut is [0.01–0.05].

• Step 6: Increment the generation index: Ngen = Ngen +1.
• Step 7: Repeat steps 2–6 on the newly generated offspring

strings until convergence is achieved. The criteria for the
convergence are: Ngen exceeds its maximum limit (Nmax

gen ),
or the fitness score of the best (fittest) string in the off-
spring population undergoes a very small or no change
over successive generations. After convergence, the string
possessing highest fitness value is decoded to obtain the
optimized decision variable vector, x∗.
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